3.509 \(\int \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=103 \[ -\frac{2 a^2 (3 B+5 i A) \sqrt{\cot (c+d x)}}{3 d}-\frac{4 \sqrt [4]{-1} a^2 (B+i A) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}-\frac{2 A \sqrt{\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d} \]

[Out]

(-4*(-1)^(1/4)*a^2*(I*A + B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*a^2*((5*I)*A + 3*B)*Sqrt[Cot[c + d
*x]])/(3*d) - (2*A*Sqrt[Cot[c + d*x]]*(I*a^2 + a^2*Cot[c + d*x]))/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.32573, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.139, Rules used = {3581, 3594, 3592, 3533, 208} \[ -\frac{2 a^2 (3 B+5 i A) \sqrt{\cot (c+d x)}}{3 d}-\frac{4 \sqrt [4]{-1} a^2 (B+i A) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}-\frac{2 A \sqrt{\cot (c+d x)} \left (a^2 \cot (c+d x)+i a^2\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(-4*(-1)^(1/4)*a^2*(I*A + B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*a^2*((5*I)*A + 3*B)*Sqrt[Cot[c + d
*x]])/(3*d) - (2*A*Sqrt[Cot[c + d*x]]*(I*a^2 + a^2*Cot[c + d*x]))/(3*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3594

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*f
*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx &=\int \frac{(i a+a \cot (c+d x))^2 (B+A \cot (c+d x))}{\sqrt{\cot (c+d x)}} \, dx\\ &=-\frac{2 A \sqrt{\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d}-\frac{2}{3} \int \frac{(i a+a \cot (c+d x)) \left (\frac{1}{2} a (A-3 i B)-\frac{1}{2} a (5 i A+3 B) \cot (c+d x)\right )}{\sqrt{\cot (c+d x)}} \, dx\\ &=-\frac{2 a^2 (5 i A+3 B) \sqrt{\cot (c+d x)}}{3 d}-\frac{2 A \sqrt{\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d}-\frac{2}{3} \int \frac{3 a^2 (i A+B)+3 a^2 (A-i B) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx\\ &=-\frac{2 a^2 (5 i A+3 B) \sqrt{\cot (c+d x)}}{3 d}-\frac{2 A \sqrt{\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d}-\frac{\left (12 a^4 (i A+B)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-3 a^2 (i A+B)+3 a^2 (A-i B) x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=-\frac{4 \sqrt [4]{-1} a^2 (i A+B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}-\frac{2 a^2 (5 i A+3 B) \sqrt{\cot (c+d x)}}{3 d}-\frac{2 A \sqrt{\cot (c+d x)} \left (i a^2+a^2 \cot (c+d x)\right )}{3 d}\\ \end{align*}

Mathematica [A]  time = 4.6349, size = 174, normalized size = 1.69 \[ -\frac{2 a^2 e^{-2 i c} \sin (c+d x) \sqrt{\cot (c+d x)} (\cos (2 (c+d x))+i \sin (2 (c+d x))) (A \cot (c+d x)+B) \left (-6 i (A-i B) \sqrt{i \tan (c+d x)} \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )+A \cot (c+d x)+6 i A+3 B\right )}{3 d (\cos (d x)+i \sin (d x))^2 (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(-2*a^2*Sqrt[Cot[c + d*x]]*(B + A*Cot[c + d*x])*Sin[c + d*x]*(Cos[2*(c + d*x)] + I*Sin[2*(c + d*x)])*((6*I)*A
+ 3*B + A*Cot[c + d*x] - (6*I)*(A - I*B)*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]]*S
qrt[I*Tan[c + d*x]]))/(3*d*E^((2*I)*c)*(Cos[d*x] + I*Sin[d*x])^2*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

Maple [C]  time = 0.454, size = 1540, normalized size = 15. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x)

[Out]

-1/3*a^2/d*2^(1/2)*(-6*I*A*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c)
)^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1
/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)-6*I*B*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c
))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2
),1/2+1/2*I,1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)+6*I*B*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c
)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(
d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)*sin(d*x+c)-6*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*
x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)*EllipticPi((-(cos(d*x+c)-1-si
n(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+6*A*cos(d*x+c)*sin(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d
*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(
d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-6*A*cos(d*x+c)*sin(d*x+c)*(-(cos(d*x+c)-1-sin(d*
x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*Ellipti
cF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-6*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*((cos(d*
x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)*EllipticPi((-(co
s(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-6*B*cos(d*x+c)*sin(d*x+c)*(-(cos(d*x+c)-1-sin(
d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*Ellip
ticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+6*I*B*(-(cos(d*x+c)-1-sin(d*x+c))/s
in(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*sin(d*x+c)+6*A*sin(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/s
in(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(
cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-6*A*sin(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/s
in(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-6*B*sin(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^
(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-
1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+6*I*A*2^(1/2)*cos(d*x+c)*sin(d*x+c)+A*2^(1/2)*cos(d*x+c
)^2+3*B*2^(1/2)*cos(d*x+c)*sin(d*x+c))*(cos(d*x+c)/sin(d*x+c))^(5/2)*sin(d*x+c)/cos(d*x+c)^3

________________________________________________________________________________________

Maxima [B]  time = 1.55138, size = 243, normalized size = 2.36 \begin{align*} -\frac{3 \,{\left (2 \, \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) - \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (-\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right )\right )} a^{2} - \frac{12 \,{\left (-2 i \, A - B\right )} a^{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{4 \, A a^{2}}{\tan \left (d x + c\right )^{\frac{3}{2}}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/6*(3*(2*sqrt(2)*(-(I + 1)*A + (I - 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(
-(I + 1)*A + (I - 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((I - 1)*A + (I + 1)*B
)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*((I - 1)*A + (I + 1)*B)*log(-sqrt(2)/sqrt(tan
(d*x + c)) + 1/tan(d*x + c) + 1))*a^2 - 12*(-2*I*A - B)*a^2/sqrt(tan(d*x + c)) + 4*A*a^2/tan(d*x + c)^(3/2))/d

________________________________________________________________________________________

Fricas [B]  time = 1.47733, size = 1026, normalized size = 9.96 \begin{align*} -\frac{3 \, \sqrt{\frac{{\left (-16 i \, A^{2} - 32 \, A B + 16 i \, B^{2}\right )} a^{4}}{d^{2}}}{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (-\frac{{\left (4 \,{\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{\frac{{\left (-16 i \, A^{2} - 32 \, A B + 16 i \, B^{2}\right )} a^{4}}{d^{2}}}{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (2 i \, A + 2 \, B\right )} a^{2}}\right ) - 3 \, \sqrt{\frac{{\left (-16 i \, A^{2} - 32 \, A B + 16 i \, B^{2}\right )} a^{4}}{d^{2}}}{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (-\frac{{\left (4 \,{\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{\frac{{\left (-16 i \, A^{2} - 32 \, A B + 16 i \, B^{2}\right )} a^{4}}{d^{2}}}{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (2 i \, A + 2 \, B\right )} a^{2}}\right ) -{\left ({\left (-56 i \, A - 24 \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (40 i \, A + 24 \, B\right )} a^{2}\right )} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{12 \,{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/12*(3*sqrt((-16*I*A^2 - 32*A*B + 16*I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log(-(4*(A - I*B)*a^2*e^(2*
I*d*x + 2*I*c) + sqrt((-16*I*A^2 - 32*A*B + 16*I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt((I*e^(2*I*d*x
+ 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a^2)) - 3*sqrt((-16*I*A^2 - 32*A
*B + 16*I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log(-(4*(A - I*B)*a^2*e^(2*I*d*x + 2*I*c) - sqrt((-16*I*A^
2 - 32*A*B + 16*I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I
*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a^2)) - ((-56*I*A - 24*B)*a^2*e^(2*I*d*x + 2*I*c) + (40*I*A + 2
4*B)*a^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^2*cot(d*x + c)^(5/2), x)